# CAT-T4 <br> Topic-Wise <br> Past papers 

Accounting for Costs [INT]

June ‘04
To
December '08


## Material Costing

## 1

A company uses Material M in the manufacture of its products. The order quantity of the material is 1,000 kg . Average usage is 400 kg per week and a safety stock of 500 kg is kept. Lead time between order and receipt is two weeks.
Receipts and issues of Material M over a three week period were:
$\mathrm{Kg} \quad$ Total cost (£)
$\begin{array}{lcccc}\text { Week 1: } & \text { Day 1 } & \text { Balance b/f } & 900 & 10,800 \\ & \text { Day } 3 & \text { Issue } & 400 & \end{array}$

| Day 3 | Issue | 400 |  |
| :--- | :---: | ---: | ---: |
| Day 5 | Receipt | 1,000 | 12,600 |

Week 2: Day 2 Issue 260
Week 3: Day 3 Issue 370
Required:
Calculate in relation to Material $M$ the:
(a) Re-order level;
(3 marks)
(b) Total cost of the four issues in the three week period if the weighted average method is applied when
each issue occurs; ( 5 marks)
(c) Cost of the stock remaining at the end of the three week period if the Last-in First-out (LIFO) method is applied.
(4 marks)
[Sec: B, Q: 1 T4 June 2004]

## $\underline{2}$

Many manufacturing organisations hold raw material stocks.
Required:
(a) List three examples of holding costs.
(3 marks)
(b) List two examples of stockout costs.
(2 marks)
A manufacturing organisation uses 20,000 kilograms $(\mathrm{kg})$ of a raw material evenly over a period. The material is purchased for $£ 2.50$ per kg, the cost of placing an order with the supplier is $£ 60$ and the cost of holding one kg of the material in stock for the period is $15 \%$ of the purchase price.

Required:
(c) Calculate the economic order quantity (EOQ) of the raw material (to the nearest $\mathbf{k g}$ ).
(d) Calculate the total holding costs of the raw material in the period if the order quantity is $3,000 \mathrm{~kg}$ and buffer stock is $1,000 \mathrm{~kg}$.

## 3(a)

[Sec: B, Q: 3 T4 June 2005

Material X is used by a company in the manufacture of one of its products, Product Z . Demand for Product $Z$ for the next year is forecast to be 26,000 units.

Each finished unit of Product $Z$ contains 0.72 kilograms of Material $X$. There is a preparation loss of $10 \%$ of material used. It is not planned to change the stock-holding of Product $Z$ in the year ahead but a reduction of 1,000 kilograms in the stock of Material X is planned.

Required:
Calculate the quantity of Material $X$ that needs to be purchased in the year ahead.

## 3(b)

Material Y is also used in the manufacture of Product Z and in several other products. The total annual requirement for Material Y is 120,000 litres, used evenly over each year.

The costs of ordering stock and holding stock are as follows:
Ordering $£ 45$ per order
Holding £0.30 per litre per annum
A safety stock of 2,500 litres of Material $Y$ is held and the average lead time (the interval between placing an order for materials and having them delivered) is 1.5 weeks.

## Required:

Calculate for Material Y the:
(i) Economic order quantity, using the formula (4 marks)
(ii) Reorder level (assume 1 year = 50 weeks);
(iii) Total annual cost of ordering stock;
(iv) Total annual cost of holding stock.
(3 marks)
[Sec: B, Q: 2 T4 June 2007]
4
At the beginning of Month 2, the balance in the stores ledger for Material M27 was $2,400 \mathrm{~kg}$ at $\$ 3.60$ per kg . The movements of the material in Month 2, and the prices per kg, were as follows:


In Month 3, no further purchases of Material M27 were made. Issues in the month were:
Day $2 \quad 3,200 \mathrm{~kg}$
Day $10 \quad 4,300 \mathrm{~kg}$
Required:
(c) Prepare the inventory record for Material M27 for Month 3, showing both the quantity AND the value of:
(i) Each of the issues; and
(ii) The balance remaining after each issue.

## CAT T4

## Labour Costing

$\qquad$

## 1

Costs relating to labour turnover may be classified as:
(i) Replacement costs
(ii) Preventative costs.

## Required:

Give TWO examples of costs within EACH of the above classifications and state a formula used to calculate the rate of labour turnover.
(6 marks)
A company manufactures a single product at the rate of 25 units per direct labour hour. 660 direct labour hours were budgeted to be worked in a period during which 640 hours were actually worked and 16,390 units were manufactured.

## Required:

Calculate the following ratios for the period:
(i) Efficiency;
(ii) Capacity;
(iii) Production volume.
(10 marks)
[Sec: B, Q: 1 T4 December 2004]

## $\underline{2}$

A company manufactures three products. Sales demand for the products in the next period is estimated to be:
Product A 6,200 units
Product B 8,000 units
Product C 11,500 units
Selling prices and unit costs are:

Selling price
Costs:

| Product A <br> £ per unit <br> 9.70 | Product B <br> £ per unit <br> 11.10 | Product C <br> £ per unit <br> 13.80 |
| :---: | :---: | :---: |
|  |  |  |
| 2.80 | 3.90 | 4.92 |
| 2.40 | 2.40 | 3.20 |
| 0.90 | 0.90 | 1.20 |
| 2.70 | 2.70 | 3.60 |

The company is experiencing a shortage of direct labour and estimates that a maximum of 8,500 hours will be available in the next period.

## Required:

(a) Demonstrate that the availability of direct labour will be a limiting factor in the next period. (4 marks)
(b) Determine the production schedule for the next period that will maximise profit.
(10 marks)
[Sec: B, Q: 4 T4 December 2004]

## 3

A company manufactures a single product. Currently, the company employs a team of six direct operatives who produce a total of 2,500 units of the product in a 40 -hour week. The hourly rate of pay for all operatives is $£ 8.00$.

In an effort to improve productivity, and thus to increase output in the normal 40 -hour week, an incentive scheme has been suggested. The scheme, which the six operatives have agreed to trial over a 4 -week period, provides for differential piecework payments in addition to a reduced basic rate per hour.

Details of the scheme are:
Basic hourly rate £4.00 per hour
Differential piecework rates:
First 2,500 units of output in a week Output 2,501 to 3,000 units in a week Output over 3,000 units in a week
$£ 0.375$ per unit
£0.45 per unit on additional units over 2,500
£0.60 per unit on additional units over 3,000

In the first week of the trial, total output was 3,080 units in the 40 hours worked.

## Required:

(a) For the existing time rate payment system, calculate:
(i) The labour cost per unit, based on the current weekly output of 2,500 units; (2 marks)
(ii) The \% change in the labour cost per unit if weekly output in the $\mathbf{4 0}$ hours worked could be increased to

2,750 units.
(2 marks)
(b) For the incentive scheme, calculate:
(i) The labour cost per unit, based on the results of the first week of the trial;
(6 marks)
(ii) The level of output in a 40 hour week at which total labour cost would be the same as under the existing time rate payment system.
(5 marks)
[Sec: B, Q: 1 T4 December 2006]
4
(a) Describe briefly how the following are used in the accounting for labour:
(i) time sheets; (3 marks)
(ii) job cards. (3 marks)
(b) The following details relate to the labour in a production cost centre for a period:

|  | Direct personnel | Indirect personnel |
| :---: | :---: | :---: |
| Hourly rates of pay: |  |  |
| Basic | \$10.00 | \$7.00 |
| Overtime | \$13.00 | \$9.10 |
| Payroll hours: |  |  |
| Productive | 310 | 118 |
| Idle | 18 | 4 |
| Total | 328 | 122 |

Additional information:

1. The basic rates of pay apply to a normal working week of 38 hours
2. There are eight direct personnel and three indirect personnel in the cost centre
3. Overtime is worked from time to time to meet the general requirements of production
4. Idle time is regarded as normal.

Required:
Calculate the total amounts:
(i) Paid to the direct personnel and the indirect personnel respectively;
(6 marks)
(ii) Charged as direct wages to work-in-progress and indirect wages to overheads respectively (show clearly
the make-up of the indirect charge).
(6 marks)
[Sec: B, Q: 4 T4 December 2008]


## Overheads Costing

## Overhead Costing

## 1

Production overheads allocated and apportioned to cost centres in a factory for a period, along with additional data, are:

|  | Production Cost Centre |  |  | Service Cost Centre |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{\mathrm{A}}$ | $\underline{\mathrm{B}}$ | $\underline{\mathrm{C}}$ | $\underline{\mathrm{X}}$ | $\underline{\underline{Y}}$ |
| Allocated overheads | $£ 17,628$ | $£ 38,490$ | $£ 14,671$ | $£ 3,795$ | $£ 6,130$ |
| Apportioned overheads | $£ 29,938$ | $£ 45,841$ | $£ 28,360$ | $£ 4,640$ | $£ 5,750$ |
|  |  |  |  |  |  |
| Additional data: | 14 | 21 | 14 | 7 | 8 |
| Number of employees | 5,200 | 7,460 | 4,780 | - | - |
| Direct labour hours |  |  |  |  |  |

Overheads allocated and apportioned to Service Cost Centre $X$ are re-apportioned on the following basis: Production Cost Centre A 20\%, Production Cost Centre B 45\%, Production Cost Centre C 35\%.

Overheads allocated and apportioned to Service Cost Centre Y are re-apportioned on the basis of the number of employees in the other cost centres.

Production overheads are absorbed on the basis of direct labour hours.
Required:
(a) Re-apportion the service cost centre overheads.
(7 marks)
(b) Calculate an overhead absorption rate for each production cost centre.
(c) Calculate the total production cost of Job 57. Direct production costs of the job are:

Direct materials
£1,678
Direct labour:
Cost Centre A $£ 288$ ( 36 hours)
Cost Centre B $£ 425$ ( 50 hours) Cost Centre C £304 (32 hours).
(4 marks)
[Sec: B, Q: 2 T4 June 2004]

## 2(a)

State an appropriate basis of apportionment for each of the following production overhead costs:
(i) Factory rent;
(ii) Staff canteen.
(4 marks)

## 2(b)

Overheads allocated, apportioned and re-apportioned to the two production cost centres in a factory for a period were:

## Budget <br> Actual

Production Cost Centre

| $\underline{X}$ | $\underline{Y}$ |
| :---: | :---: |
| $£ 161,820$ | $£ 97,110$ |
| $£ 163,190$ | $£ 96,330$ |

Overheads are absorbed using predetermined rates. A machine hour rate is used in Production Cost Centre X and a direct labour hour rate in Production Cost Centre Y. Machine and direct labour activity in each production cost centre is:

|  | Production Cost Centr |  |
| :--- | :---: | :---: |
|  | $\underline{X}$ | $\underline{Y}$ |
| Machine hours: | 8,700 | 1,760 |
| Budget | 8,960 | 1,725 |
| Actual |  |  |
|  |  |  |
| Direct labour hours: | 6,220 | 8,300 |
| Budget | 6,276 | 7,870 |
| Actual |  |  |

Required:
Calculate for each production cost centre for the period:
(i) The predetermined production overhead absorption rate;
(3 marks)
(ii) The production overheads absorbed;
(3 marks)
(iii) The over/under absorption of production overhead.
(4 marks)
[Sec: B, Q: 2 T4 December 2005]
3
There are two production cost centres (P1 and P2) and two service cost centres (Materials Store and
Employee Facilities) in a factory. Estimated overhead costs for the factory for a period, requiring
apportionment to cost centres, are:
Buildings depreiation and insurance
Buildings depreciation and insurance 42,000
Management salaries 27,000
Power to operate machinery 12,600
Other utilities 9,400
In addition, the following overheads have been allocated to cost centres:

| P1 | P2 | Cost Centre |  |
| :---: | :---: | :---: | :---: |
| Materials Store | Employee Facilities |  |  |
| $£ 107,000$ | $£ 89,000$ | $£ 68,000$ | $£ 84,000$ |

Further information:
Cost Centre

|  | P1 | P2 | Materials Store | Employee F |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Floor area (m2) | 4,560 | 5,640 | 720 | 1,080 | 12,000 |
| Number of employees | 18 | 24 | 6 | 6 | 54 |
| Share of other utilities overhead | 35\% | 45\% | 10\% | 10\% | 100\% |
| Machine hours | 6,200 | 5,800 |  |  | 12,000 |
| Share of Materials Store overheads | 40\% | 60\% |  |  | 100\% |

## Required:

(i) Prepare a schedule showing the allocated and apportioned factory overhead costs for each cost centre;
(ii) Re-apportion the service cost centre overheads.

## 4

A company has three production departments ( $\mathrm{X}, \mathrm{Y}$ and Z ) in its factory. After completion of all overhead allocation and apportionment, the production department budgets for Year 6 included the following:

|  | Department |  |  |
| :--- | :---: | :---: | :---: |
|  | X | Y | Z |
| Overhead costs | $£ 51,240$ | $£ 87,120$ | $£ 66,816$ |
| Direct labour hours | - | - | 11,520 |
| Machine hours | 4,200 | 5,280 | - |

A predetermined overhead absorption rate is established for each production department each year.
Actual data for Month 1 of Year 6 included:

|  | Department |  |  |
| :--- | :---: | :---: | :---: |
|  | X | Y | Z |
| Overhead costs | $£ 4,410$ | $£ 7,190$ | $£ 5,610$ |
| Direct labour hours | - | - | 985 |
| Machine hours | 340 | 426 | - |

## Required:

(a) Calculate, from the data provided, an appropriate predetermined overhead absorption rate for each production department for Year 6.
(b) Calculate the amount of the over/under absorption of overhead in Month 1 in each production department and in total for the factory.
(c) Suggest two general causes of overhead under absorption.
(3 marks)
[Sec: B, Q: 2 T4 December 2006]

## 5(a)

A company has three production cost centres (P1, P2 and P3) and two service cost centres (S1 and S2) in its factory. The actual production overhead costs for a period, totalling $£ 487,430$, have been allocated and apportioned to cost centres as follows:

| Production cost centre |  |  |  |
| :---: | :---: | :---: | :---: |
| P1 | P2 | P3 |  |
| $£ 176,860$ | $£ 96,250$ | $£ 134,770$ |  |

## Service cost centre <br> $\begin{array}{cc}\text { ST } & \text { SQ } \\ £ 42,150 & £ 37,400\end{array}$

The overheads of service cost centre S1 are reapportioned on the basis of the number of materials requisition notes (MRN) raised in the period. The overheads of service cost centre S2 are reapportioned on the basis of the number of employees in the other cost centres. The following additional actual information is available for the period:

| Cost centre | Number of employees | Number of MRNs |
| :--- | :---: | :---: |
| P1 | 20 | 4,970 |
| P2 | 25 | 3,550 |
| P3 | 50 | 5,680 |
| S | 1 | 8 |
| S | 2 | 5 |

## Required:

(a) Reapportion the service cost centre overheads.

## 5(b)

The predetermined production overhead rates for the period, used to absorb overheads, are:

| P1 | $£ 24.60$ per machine hour |
| :--- | :--- |
| P2 | $£ 13.40$ per direct labour hour |
| P3 | $£ 10.80$ per direct labour hour |

Machine hours and direct labour hours in each production cost centre are:

| Cost centre | Machine hours |  | Direct labour hours |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Budget | Actual | Budget | Actual |
| P1 | 8,100 | 8,250 | 3,650 | 3,680 |
| P2 | 1,960 | 1,880 | 8,650 | 8,440 |
| P3 | 3,610 | 3,720 | 15,600 | 15,990 |

## Required:

Calculate for the period for each production cost centre:
(i) The amount of overheads absorbed;
(ii) The amount of any over or under absorption of overheads.
(6 marks)
[Sec: B, Q: 4 T4 June 2007]
6
The following information is available for two production cost centres in a factory for a period:

Cost centre X
Budgeted costs
Budgeted hours
Predetermined absorption rate
Actual costs
Actual hours
\$28,556
1,210 machine hours
$\$ 23.60$ per machine hour
\$29,609
1,235 machine hours

Cost centre $Y$
\$54,264
6,460 labour hours
$\$ 8.40$ per labour hour
\$52,567
6,395 labour hours
Required:
(a) Calculate the over or under absorption of overhead for the period in each cost centre.
(6 marks)
(b) Explain two advantages of using predetermined, as opposed to actual, overhead absorption rates.
(4marks)
[Sec: B, Q: 3 T4 December 2007]
$\underline{7}$
Three of the cost items that are included in the production overhead budget for a factory for a period are:

| Machine maintenance labour | $\$ 33,600$ |
| :--- | :--- |
| Power | $\$ 26,000$ |
| Rent and rates | $\$ 39,800$ |

Production overheads are currently absorbed using a single factory-wide rate.
It has been suggested that a separate overhead absorption rate should be calculated for each of the three groups of machines in the factory. The following additional budgeted data has been collected for the period:

|  | Machine Group |  |  | Total |
| :--- | :--- | :---: | :--- | :--- |
|  | MG1 | MG2 | MG3 |  |
| Floor area (m2) | 1,600 | 1,400 | 1,000 | 4,000 |
| Machine values (\$'000) | 320 | 250 | 230 | 800 |
| Kilowatt hours ('000) | 220 | 110 | 110 | 440 |
| Machine maintenance (labour hours) | 600 | 400 | 600 | 1,600 |
| Number of indirect workers | 4 | 4 | 2 | 10 |
| Machine hours | 8,200 | 5,600 | 4,900 | 18,700 |

Required:
(a) Briefly explain one reason why a separate overhead absorption rate for each machine group would be preferable to a single factory-wide rate. $\quad$ (2 marks)
(b) Apportion each of the three items of budgeted overhead cost (machine maintenance labour, power and rent and rates) to the three machine groups.
(7 marks)
The totals of ALL budgeted production overhead cost items, allocated and apportioned to the three machine groups, are as follows:

| MG1 | $\$ 129,560$ |
| :--- | :--- |
| MG2 | $\$ 107,520$ |
| MG3 | $\$ 119,070$ |

Required:
(c) Calculate an appropriate absorption rate for each machine group.
(3 marks)
(d) Calculate the production overhead that would be charged to Job J21 which requires five hours on MG1 machines, two hours on MG2 machines and three hours on MG3 machines.
(3 marks)
[Sec: B, Q: 3 T4 June 2008]


## 1

A company manufactures carpet for the hotel industry. No finished stocks are carried as the company only manufactures specifically to customer order. At the end of Month 6, one incomplete job (Job X124) remained in progress. Production costs incurred on the job to the end of Month 6 were:

Direct material $£ 7,220$
Direct labour £6,076
Production overhead £10,416
During Month 7, the company accepted two further jobs (Jobs X125 and Job X126) and incurred prime costs as follows:

|  | Job X124 | Job X125 | Job X126 |
| :--- | :---: | :---: | :---: |
| Direct material issued from stores | $£ 6,978$ | $£ 18,994$ | $£ 12,221$ |
| Direct material returned to stores | Nil | $(£ 700)$ | $(£ 2,170)$ |
| Direct material transfers | Nil | $£ 860$ | $(£ 860)$ |
| Direct labour hours | 780 | 2,364 | 1,510 |

Direct labour is paid at a rate of $£ 7.00$ per hour. Production overheads are absorbed at a rate of $£ 12.00$ per direct labour hour.

During Month 7, Jobs X124 and X125 were completed. On completion of a job, 20\% of the total production cost is added in order to recover distribution, selling and administration costs. The amounts invoiced to customers during Month 7 for the completed jobs were:

Job X124 £60,000
Job X125 £79,000

## Required:

(a) For each of the jobs calculate the following total costs:
I. Direct material; (3 marks)
II. Direct labour; (3 marks)
III. Production overhead.
(b) Calculate the total cost and profit/(loss) of each of Job X124 and Job X125.
[Sec: B, Q: 2 T4 Pilot Paper]

## $\underline{2}$

Give an example of a business where job costing may be applied and describe the features of this type of business which make the costing method appropriate;

## $\underline{3}$

Company X is preparing a job cost estimate that will be used to provide a quote for a potential customer.
Estimated costs for the job are to be based on the following:

## Direct materials <br> £2,893

Direct labour
210 hours at a basic rate of $£ 8.00$ per hour. Direct production staff also receive a bonus each period. The bonus is paid on actual hours worked at a rate per hour calculated using the following formula:
\{[(time allowed - time worked) / time allowed] - basic rate per hour\}
The bonus to be included currently in the costing of all jobs is based on the following estimates for the period:

- Total time worked 3,400 labour hours
- Total time allowed 4,000 labour hours
at $20 \%$ of prime cost (including labour bonus) $+£ 9.00$ per direct labour hour
Non-production overheads Absorbed at $25 \%$ of total production cost
Quoted prices are calculated to provide Company X with a net profit margin of $20 \%$ of sales.
Required:
(a) Calculate the total estimated PRODUCTION cost of the job.
(b) Calculate the price that should be quoted for the job.


## 1 <br> Describe the main ways in which the costing of services differs from the costing of manufactured products. <br> [Sec: B, Q: 3(i) T4 December 2004]

## $\underline{2}$

A transport business operates a fleet of 10 vehicles. Operating data are as follows:
Purchase of vehicles (depreciated on a straight-line basis over 4 years) $£ 460,000$ (for 10 vehicles)
Vehicle disposal value (after 4 years)
Road fund licence and insurance
Tyres (8 per vehicle renewed every 40,000 kilometres)
£4,000 (per vehicle)

Servicing (every 16,000 kilometres)
Fuel (consumption of 1 litre per 3.2 kilometres)
Vehicle usage
Drivers (1 driver per vehicle)
£2,290 (per vehicle per year)
$£ 210$ (per tyre)
$£ 650$ (per vehicle service)
$£ 0.80$ (per litre)
80,000 kilometres (per vehicle per year)
$£ 18,000$ (per driver per year)

## Required:

Calculate the total vehicle operating costs per kilometre (to four decimal places of $£$ ).
(10 marks)
[Sec: B, Q: 3(ii) T4 December 2004]
$\underline{3}$
A passenger transport company operates four coaches, each with a capacity for 25 passengers. The company operates on two routes with two coaches on each route. Each coach on Route A completes 12 journeys per day and on Route B 10 journeys per day. The coaches operate for six days per week and for 52 weeks per year.

The company is analysing performance on each route and has gathered the following route data for the last 52 weeks:

Average number of passengers per journey
Average fare paid per passenger, per journey
Route length per journey (kilometres)

| Route A | Route B |
| :--- | :--- |
| 13 | 11 |
| $\$ 2.26$ | $\$ 2.80$ |
| 14 | 19 |

Operating cost data for the last 52 week period is as follows:
Drivers' wages: $\quad \$ 110$ per coach per working day
Fuel and maintenance: $\quad \$ 0.8932$ per kilometre
Vehicle tax and insurance: $\quad \$ 3,870$ per coach for the period
Apportioned fixed costs: $\$ 21,760$ per route for the period
Required:
Calculate, for the 52 week period, the:
(a) Total cost per coach on each route; $\quad$ (10 marks)
(b) Cost per kilometre on each route (to four decimal places of \$);
(c) Profit per kilometre on each route.

# Absorption and Marginal Costing 

Topic-Wise | Past exam papers

## Absorption and Marginal Costing

## 1

A company manufactures a single product with a selling price of $£ 28$ per unit. Variable production costs per unit of product are:
Direct material $£ 6 \cdot 10$
Direct labour $£ 5.20$
Variable overhead £1-60
Fixed production overheads are $£ 30,000$ per month. Administration overheads are semi-variable in nature: variable costs are $5 \%$ of sales and fixed costs are $£ 13,000$ per month.

Production and sales quantities over a two month period are:

|  | Production | Sales |
| :--- | :--- | :--- |
| Month 1 | 4,000 units | 3,500 units |
| Month 2 | 3,600 units | 3,800 units |
| There is no finished goods stock at the beginning of Month 1. |  |  |

The company has prepared the following profit statement for each of the two months using the absorption costing method:
Profit statement

Month 1
£ $\quad \underset{98,000}{ }$

## Sales

Production cost of sales: Opening stock
Cost of production
Closing stock*
Gross profit
Administration overhead
Net profit
-
81,600
$(10,200)$

71400
71,400
$\underline{17,900}$
$\underline{\underline{8,700}}$

Month 2
£ $\underset{106,400}{£}$
10,200
76,440
(6,370) $\quad 80,270$ 26,130
18,320
7.810

* Stock valuation: end Month $1 £ 81,600 \times(500 \div 4,000$ units $)$

$$
\text { end Month } 2 £ 76,440 \times(300 \div 3,600 \text { units })
$$

## Required:

(a) Prepare a profit statement for each of the two months using the marginal costing method. (10marks)
(b) Provide a reconciliation of the absorption costing and marginal costing profits for Month 2 , supported by a full explanation of the difference.
(7 marks)
[Sec: B, Q: 1 T4 Pilot Paper]

$$
\begin{aligned}
& \underline{2} \\
& \text { A company has the following costs for its single product, based on planned production and sales of } \\
& 46,000 \text { litres in a period: } \\
& \text { Prime costs } \\
& \text { Production overhead - all fixed } \\
& \text { Non-production overhead litre } \\
& \text {-variable } \\
& \text { - fixed } \\
& \\
&
\end{aligned}
$$

Actual production and sales in the period were:
Production 46,000 litres

Sales $\quad 45,600$ litres (at $£ 12.00$ per litre)
There was no finished stock at the beginning of the period. Variable costs per litre and total fixed costs in the period were as planned. Variable non-production overheads vary in total with the number of litres sold.

Required:
(a) Prepare a profit statement for the period using absorption costing.
(b) Explain fully why, and calculate by how much, the profits for the period would be different if marginal costing was used instead.
$\underline{3}$
A book publisher makes an initial payment of $£ 25,000$ to authors for each accepted manuscript, followed by a royalty payment of $15 \%$ of the net sales price of each book sold.

The net sales price of a book, which is the revenue received by the publisher, is the listed selling price in bookstores less the bookstore margin of $20 \%$ of the listed selling price.

A particular book has a listed selling price of $£ 15 \cdot 00$. Costs incurred on the book by the publisher
(excluding initial and royalty payments to the author) are:
Variable costs per copy $£ 3.20$
Total fixed costs £80,000
Required:
(a) Calculate the number of copies of the particular book that need to be sold for the publisher:
(i) to break even;
(9 marks)
(ii) to make a profit of $£ 35,000$.
(3 marks)
(b) Prepare a profit/volume (P/V) chart for the publisher, relating to the particular book publication, covering sales up to 25,000 copies.
(5 marks)
[Sec: B, Q: 4 T4 June 2005]

## 4

The following is a list of unit costs for a single product, incurred in a period, using either marginal costing or absorption costing:

Production costs:
Prime cost
Variable overhead
Fixed overhead
Marginal costing
$\$$
Absorption costing
\$ \$
$4.20 \quad 4.20$
$0.60 \quad 0.60$
-


Selling \& administration costs:
Variable overhead
Fixed overhead
Total $\frac{1.00}{5.80} \quad \frac{3.90}{12.50}$

The selling price of the product, throughout the period, was $\$ 14.50$ per unit. 11,400 units of the product were manufactured in the period during which 11,200 units were sold. There were no finished goods at the beginning of the period. The fixed production overhead costs per unit listed above are based on the production units for the period and the fixed selling and administration overhead costs per unit are based on the sales units.

## Absorption and Marginal Costing

Required:
(a) Prepare an absorption costing profit statement for the period. The statement should include the total cost of production, closing inventory value, total gross profit and total net profit.
(8 marks)
(b) Using marginal costing, calculate for the period:
(i) Total contribution; (3 marks)
(ii) Total net profit;
(3 marks)
(iii) Break-even sales revenue.
(3 marks)
(c) Explain why the net profit using absorption costing differs from that using marginal costing. (2 marks)
[Sec: B, Q: 1 T4 December 2007]


## 1

A company manufactures three products. Sales demand for the products in the next period is estimated to be:

Product A 6,200 units
Product B 8,000 units
Product C 11,500 units
Selling prices and unit costs are:

|  | Product A <br> $£$ per unit <br> 9.70 | Product B <br> $£$ per unit <br> 11.10 | Product C <br> $£$ per unit <br> 13.80 |
| :--- | :---: | :---: | :---: |
| Selling price |  |  |  |
| Costs: | 2.80 | 3.90 | 4.92 |
| Direct materials | 2.40 | 2.40 | 3.20 |
| Direct labour (£8.00 per hour) | 0.90 | 0.90 | 1.20 |
| Variable overhead | 2.70 | 2.70 | 3.60 |
| Fixed overheads |  |  |  |

The company is experiencing a shortage of direct labour and estimates that a maximum of 8,500 hours will be available in the next period.
Required:
(a) Demonstrate that the availability of direct labour will be a limiting factor in the next period.
(b) Determine the production schedule for the next period that will maximise profit.
[Sec: B, Q: 4 T4 December 2004]

## 2(a)

Company A manufactures and sells a single product. The following information is available:

| Selling price per unit | $£ 60 \cdot 00$ |
| :--- | :--- |
| Variable costs per unit | $£ 36 \cdot 00$ |
| Fixed costs per period | $£ 216,000$ |

Required:
(i) Draw a profit/volume (P/V) chart based on sales up to 14,000 units per period. (8 marks)
(ii) Clearly identify the break-even point, and areas of profit and loss, on the chart.

## 2(b)

Company B manufactures and sells three products. The following information is available:

|  | Product A | Product B | Product C |
| :--- | :---: | :---: | :---: |
| Selling price per unit | $£ 10.00$ | $£ 12.50$ | $£ 18.70$ |
| Variable costs per unit | $£ 5.20$ | $£ 7.50$ | $£ 9.35$ |
| Machine hours per unit | 0.6 | 0.5 | 1.0 |
| Direct labour hours per unit | 1.0 | 1.2 | 2.5 |

The company wishes to maximise profit each period.

## Required:

(i) Calculate the contribution/sales (C/S) ratio of each of the products;
(ii) List the products in the order of their production priority (i.e. most profitable product first) in EACH of the following situations:
(1) if machine hours are the limiting factor; (3 marks)
(2) if direct labour hours are the limiting factor.
$\underline{3}$
A profit/volume (P/V) chart of two companies (A and B) for a period follows:


## Required:

(a) By reference to the above chart:
(i) Estimate the break-even sales revenue of Company A; (2 marks)
(ii) Estimate the total fixed costs of Company A;
(2 marks)
(iii) State which company has the higher contribution/sales ratio (justify your conclusion); (3 marks)
(iv) Estimate the level of sales at which the profit of the two companies is the same.
(2 marks)
(b) Calculate the contribution/sales ratio of Company A and use this to confirm, by calculation, the breakeven point identified in (a) (i) above.

## 4

The variable costs per unit of a company's single product for the period just ended were:

|  | $£$ |
| :--- | ---: |
| Production | 120 |
| Non-production | 16 |

The selling price of the product in the period was £200 per unit and the sales revenue required to breakeven was $£ 120,000$.

## Required:

(a) Calculate for the period just ended:
(i) The contribution/sales ratio;
(ii) The total fixed costs.
(b) In the following period it is expected that fixed costs will total $£ 39,000$.

Required:
Calculate the required contribution per unit in the following period for the break-even point to be 500 units.
(4 marks)
[Sec: B, Q: 3 T4 June 2007]
5
A garage operates a vehicle repair service. Space is limited and, although the garage is usually busy, the owner is concerned about the amount of profit that can be generated. Summarised data concerning vehicle repairs follows:

Average number of repairs per period
85
Average variable cost of each repair
\$126
Average sales value of each repair \$210

The owner is considering extending the garage opening hours. This would result in an increase in fixed costs from $\$ 6,972$ to $\$ 7,728$ per period. The average variable cost and the average sales value of each repair would be expected to remain the same.

Required:
(a) For the current situation, calculate per period the:
(i) Profit:
(3 marks)
(ii) Break-even sales revenue.
(4 marks)
(b) For the proposed extended opening hours, calculate the average number of repairs required per period to achieve the current level of profit.
(4 marks)

CAT

## Process Costing



## 1

Chemicals $X, Y$ and $Z$ are produced from a single joint process. The information below relates to the period just ended:
Input to process: Direct materials 3,200 litres, cost £24,000
Direct labour £48,000

Factory overheads are absorbed at $120 \%$ of prime cost
Output from process: Chemical X 1,440 litres
Chemical Y $\quad 1,864$ litres
Chemical Z 1,576 litres
Scrap
$10 \%$ of input, credited to the process account at sales value as it occurs

Selling prices:
Chemical X
Chemical Y
Chemical Z
Scrap
£100 per litre £80 per litre £60 per litre £16 per litre
Required:
Calculate for the period just ended:
(a) The joint process costs to be apportioned to the joint products;
(b) The total sales value of the output of the three products;
(c) The share of the joint process costs charged to Chemical X , using the volume of output method of apportionment;
(d) The share of the joint process costs charged to Chemical $Y$, using the sales value method of apportionment.
(3 marks)
[Sec: B, Q: 3 T4 Pilot Paper]
$\underline{2}$
Give an example of a business where process costing may be applied and describe the features of this type of business which make the costing method appropriate.
(4 marks)
[Sec: B, Q: 3(a)(ii) T4 June 2004]
A company manufactures a product by means of two successive processes, Process 1 and Process 2. The following relates to the period just ended:

Process 2
Units Cost (£)

| Opening work-in-progress | Nil | Nil |
| :--- | ---: | ---: |
| Transfer from Process 1 | 2,160 | 22,032 |
| Material added |  | 5,295 |
| Conversion costs |  | 8,136 |
| Transfer to finished goods warehouse | 1,950 |  |
| Closing work-in-progress | 210 |  |

The work-in-progress at the end of the period was $80 \%$ complete with respect to material added and $40 \%$ complete with respect to conversion costs in Process 2.

## Required:

Calculate for the period the:
(i) Production cost per equivalent unit of the product; (6 marks)
(ii) Value of the transfer to the finished goods warehouse;
(iii) Value of the closing work-in-progress in Process 2.

## $\underline{3}$

600 tonnes of raw material, costing $£ 430,032$, were input to a process in a period. Conversion costs totaled $£ 119,328$. Losses, in the form of reject product, are normally $12 \%$ of input. Reject product is sold for $£ 260.00$ per tonne.

521 tonnes of finished product passed inspection in the period. The remaining output was sold as reject product. There was no work-in-progress either at the beginning or the end of the period.

## Required:

For the period:
(a) Calculate the cost per unit of normal output.
(b) Prepare the process account, including any abnormal losses/gains.
(6 marks)

## 4

In another process operation joint products A and B are produced. Joint costs, apportioned on the basis of weight of output, are $£ 9.80$ per kg. Product A can be sold at the split-off point for $£ 9.00$ per kg.

Alternatively the product can be processed further, at an incremental cost of $£ 2 \cdot 10$ per kg , and sold as
Product AA at a price of $£ 11.50$ per kg.

## Required:

Comment on EACH of the following statements concerning Product A:
(i) The product should be processed further because if sold as Product $A$ the selling price is below cost;
(ii) The product should be processed further because profit would increase (show calculations clearly to support your comment).
(4 marks)
[Sec: B, Q: 4(b) T4 June 2006
5
A company manufactures two products, Product A manufactured in Process Y and Product B
manufactured in Process $Z$. The following information is available for a period:

|  | Process $Y$ | Process $Z$ |
| :--- | :--- | :--- |
| Opening work-in-progress | Nil | Nil |
| Raw materials input | $\$ 162,180(18,000 \mathrm{~kg})$ | $\$ 210,090$ |
| Conversion costs | $\$ 94,050$ | $\$ 287,760$ |
| Waste material | $1,000 \mathrm{~kg}($ Note 1) | Nil |
| Sales value of waste material | $\$ 1 \cdot 60$ per kg | Nil |
| Output of finished product | $17,000 \mathrm{~kg}$ | 12,600 units |
| Closing work-in-progress | Nil | 1,500 units (Note 2) |

Note 1
In Process Y the normal amount of waste material is $5 \%$ of the weight of raw materials input.
Note 2
In Process $Z$ the closing work-in-progress is $100 \%$ complete as to raw materials and $60 \%$ complete as to conversion costs.

## Required:

(a) For Process Y , calculate the:
(i) Cost per kg of the expected production of Product A ; and
(8 marks)
(ii) Total cost of the finished output of Product A.
(b) For Process $\mathbf{Z}$, calculate the equivalent units of production of Product $\mathbf{B}$ in respect of conversion costs.
(3 marks)

## 6

The following data is provided for a chemical process for a period:

Materials input Conversion cost
Opening work-in-progress
Closing work-in-progress
$29,000 \mathrm{~kg}$ (kilograms) at a total cost of $\$ 162,342$
\$74,700
Nil
$3,000 \mathrm{~kg}, 60 \%$ complete as to conversion costs

There is a preparation loss at the start of the process operation. Actual losses in the period were at the normal level of $10 \%$ of the materials input.

Required:
For the period:
(a) Calculate the cost per kg (kilogram) of production. (6 marks)
(b) Prepare the process account (showing kg as well as value).
CAT

1
A company manufactures Products $A$ and $B$ jointly in a single operation. The following information relates to the most recent period:

|  | Kg | Costs (£) |
| :--- | :---: | :---: |
| Raw material input | 120,000 | 432,000 |
| Conversion costs |  | 348,000 |
| Output - Product A | 72,000 |  |
| $\quad$ - Product B | 48,000 |  |

Product $A$ is sold for $£ 8.60$ per kg . Product $B$ can be sold for $£ 7.80$ per kg or alternatively can be further processed to produce the same weight of Product BB. Further processing costs are $£ 1.40$ per kg. Product BB can be sold for $£ 9.00$ per kg.

## Required:

(a) Calculate the profit/loss in the period for each product and in total, assuming:
i. All output was sold as Products A and B; and
ii. Joint costs were apportioned on the basis of weight of output.
(b) Determine whether further processing of Product $B$ is worthwhile.
(6 marks)
[Sec: B, Q: 2 T4 December 2004]

## $\underline{2}$

Two products ( Y and Z ) are jointly produced in a single process. Joint costs for a period totalled £52,000. Output of the two products in the period was:
Product Y

$$
2,000 \text { units }
$$

Product Z
3,500 units
There was no opening or closing work-in-progress or finished goods stock.
Both products are currently sold without further processing for:
Product Y
$£ 12.00$ per unit
Product Z $£ 16.00$ per unit
Sales values are used as the basis for apportioning joint costs.

## Required:

Prepare a statement showing the gross profit (in total and per unit) for each product in the period. (9 marks)
[Sec: B, Q: 4(a) T4 June 2006]
3
The following summary shows the selling prices, costs and output of joint products JP1 and JP2 from a manufacturing process:

|  | $\frac{\text { Product JP1 }}{}$ | Product JP2 |
| :--- | :--- | :--- |
| Selling price | $\$ 20 \cdot 00 \mathrm{per} \mathrm{kg}$ | $\$ 10.00 \mathrm{per} \mathrm{kg}$ |
| Share of joint costs | $\$ 12.00 \mathrm{per} \mathrm{kg}$ | $\$ 12.00 \mathrm{per} \mathrm{kg}$ |
| Profit/(loss) | $\$ 8.00 \mathrm{per} \mathrm{kg}$ | $(\$ 2.00) \mathrm{per} \mathrm{kg}$ |
| Output | 100 kg | 120 kg |

Both products can be sold at the split-off point but Product JP1 can also be further processed to form Product FP1. Relevant selling price, cost and output information for Product FP1 is:

Product FP1
Selling price
Further processing costs
Output
$\$ 25.00$ per kg
$\$ 3.50$ per kg
100 kg

Required:
(a) Calculate the total joint costs for the period and state the method used to apportion them in the situation above.
(b) Comment on each of the following statements, justifying your comments with supporting calculations:
(i) Product JP2 should be discontinued because it makes a loss of $\mathbf{\$ 2 . 0 0}$ per unit; (4 marks)
(ii) Product JP1 should be further processed.
(4 marks)
[Sec: B, Q: 4 T4 December 2007]


## 1

A company currently has spare labour hours in Department $X$ and spare machine capacity in Department
Z , and is considering each of the following independent opportunities:

1. Whether to quote for Contract $W$ which would be completed in the near future.
2. Whether to take on sub-contract work for a period of three years.
3. Contract W:

The contract would be carried out without the need for any additional direct operatives in Department X where two existing operatives, each paid at a rate of $£ 7.50$ per hour for a guaranteed 37 -hour week, would work on the contract for a total of 220 hours. In another department, Department Y , additional labour would have to be taken on at a cost of $£ 2,400$.
Total material costs for the contract are estimated at $£ 5,740$, based on replacement prices. Included in materials is Component M , a quantity of which is in stock. Component M is no longer used in the company's business.

Details of Component M are:
Stockholding 80 units
Required for Contract W 120 units
Purchase price of existing stock $£ 6 \cdot 10$ per unit
Disposal proceeds of existing stock if sold $£ 4 \cdot 60$ per unit
Replacement price
£6.50 per unit
Overheads would be absorbed on the contract on the following basis:
Production overheads $120 \%$ of direct labour cost (only $20 \%$ of the overheads absorbed would be an incremental cost)
$40 \%$ of total production cost (none of the overheads absorbed would be an incremental cost)
2. Sub-contract work:

The sub-contract work would be carried out in Department Z, utilising existing machinery. The machinery is now surplus to requirements and would otherwise be sold. The net book value of the machinery is $£ 140,000$ but the current disposal value is only $£ 120,000$. If used for three years on the sub-contract work the disposal value would be expected to reduce to $£ 10,000$. The remaining net book value of the machinery would be depreciated on a straight-line basis over the three years.

Net cash inflows from the sub-contract work, occurring at the end of each year, are forecast to be:

| Year 1 | $£ 40,000$ |
| :--- | :--- |
| Year 2 | $£ 55,000$ |
| Year 3 | $£ 60,000$ |

## Required:

(a) Calculate the minimum price that could be quoted for Contract W in order to recover incremental costs only. (Show workings clearly.)
(10 marks)
(b) Calculate the net present value (NPV) for the sub-contract work at a cost of capital of $\mathbf{1 0 \%}$ per annum.

Discount factors at 10\%:

| Year 1 | 0.909 |
| :--- | :--- |
| Year 2 | 0.826 |
| Year 3 | 0.751 |

(a) Define the term 'limiting factor' and give an example. (3 marks)
(b) A company manufactures three products ( $\mathrm{X}, \mathrm{Y}$ and Z ). All direct operatives are the same grade and are paid at $\$ 11$ per hour. It is anticipated that there will be a shortage of direct operatives in the following period, which will prevent the company from achieving the following sales targets:
$\begin{array}{ll}\text { Product } X & 3,600 \text { units } \\ \text { Product Y } & 8,000 \text { units } \\ \text { Product } Z & 5,700 \text { units }\end{array}$
Selling prices and costs are:

|  | Product X \$ per unit | Product Y \$ per unit | Product Z \$ per unit |
| :---: | :---: | :---: | :---: |
| Selling prices | $100 \cdot 00$ | 69.00 | 85.00 |
| Variable costs: |  |  |  |
| Production* | 51.60 | 35.00 | 42.40 |
| Non-production | 5.00 | 3.95 | 4.25 |
| Fixed costs: |  |  |  |
| Production | $27 \cdot 20$ | $19 \cdot 80$ | 21.00 |
| Non-production | $7 \cdot 10$ | 5.90 | 6.20 |
| *includes the cost of direct operatives 24.2016 .5017 .60 |  |  |  |
| The fixed costs per unit are based on achieving the sales targets. There would not be any savings in fixed costs if production and sales are at a lower level. |  |  |  |
| Required: <br> (i) Determine the production plan that would maximise profit in the following period, if the available direct operatives' hours total 26,400 . <br> (11 marks) <br> (ii) Calculate the total net profit in the following period based on the production plan in (b) above. |  |  |  |
|  |  |  |  |

[Sec: B, Q: 4 T4 June 2008]

## Investment Appraisal

(a) Distinguish between net profit and net cash flow and explain the rationale for discounting cash flows in the appraisal of capital investment project viability.
(b) A company is considering an investment in new equipment. The company has a cost of capital of $12 \%$ per annum.
Required:
Calculate:
(i) The net present value (NPV); (3 marks)
(ii) The internal rate of return (IRR);
(iii) The discounted payback period,

Of the investment project, using the following information as appropriate:

| Year | Cash flow <br> $(£ 000)$ | Discount <br> Factor (12\%) | Discount <br> Factor (20\%) |
| :---: | :---: | :---: | :---: |
| 0 | $(460)$ | 1.000 | 1.000 |
| 1 | 150 | 0.893 | 0.833 |
| 2 | 140 | 0.797 | 0.694 |
| 3 | 180 | 0.712 | 0.579 |
| 4 | 250 | 0.636 | 0.482 |
| 5 | 160 | 0.567 | 0.402 |
| 6 | $(40)$ | 0.507 | 0.335 |

[Sec: B, Q: 4 T4 Pilot Paper]

## $\underline{2}$

A company is considering investment in several projects. The following information relates to three of the projects:

Project 1: Investment of $£ 119,000$ at the start of the project.
Net cash inflow of $£ 13,500$ per annum in perpetuity.
Project 2: Investment of $£ 241,000$ at the start of the project.
Net present value (NPV) at $20 \%$ of ( $£ 23,000$ ) i.e. negative, based on net cash inflows of:
1st year $£ 60,000$
2nd year $£ 65,000$
3rd year $£ 70,000$
4th year $£ 100,000$
5th year £85,000
Project 3: Investment of $£ 186,000$ at the start of the project.
Constant annual net cash inflows for five years.
Internal rate of return (IRR) of $14 \%$.
Assume that net cash inflows occur at the end of each year.
Discount factors at 10\% per annum (the company's cost of capital) and at 14\% per annum are:

| Year | 10\% | 14\% |
| :---: | :---: | :---: |
| 1 | 0.909 | 0.877 |
| 2 | 0.826 | 0.769 |
| 3 | 0.751 | 0.675 |
| 4 | 0.683 | 0.592 |
| 5 | 0.621 | 0.519 |
| 1 to 5 | 3.790 | 3.432 |

## Required:

(a) Calculate the net present value (NPV) of Project 1 at the company's cost of capital.
(b) Calculate the estimated internal rate of return (IRR) of Project 2.
(3 marks)
(c) Calculate the annual net cash inflow of Project 3.
(6 marks)
(3 marks)
(d) If the cost of capital increased to $15 \%$, state, with reasons, whether investment in Projects 2 and 3 would be justified. (NB Base your answer on the discounted cash flow analysis already carried out. No further discounted calculations are required.)
(3 marks)
[Sec: B, Q: 4 T4 June 2004]

## 3(a)

The future value $(\mathrm{S})$ of a sum invested now can be calculated using the formula:
$S=P(1+r)^{n}$
Required:
(i) Define each of the other constituents in the formula above (i.e. P, $r$ and $n$ );
(ii) Calculate the value (to the nearest $£$ ) after four years of $£ 5,000$ invested now at a compound rate of interest of $8 \%$ per annum.
(3 marks)

## 3(b)

A company is considering an investment in new machinery. The incremental annual profits (losses)
relating to the investment are estimated to be:
$£^{\prime} 000$
Year 1
(11)

Year 2
3
Year 3 34
Year 4 47
Year 5 8
Investment at the start of the project would be $£ 175,000$. The investment sum, assuming nil disposal value after five years, would be written off using the straight-line method. The depreciation has been included in the profit estimates above, which should be assumed to arise at each year end.

## Required:

(i) Calculate the net present value (NPV) of the investment at a discount rate of $10 \%$ per annum (the company's required rate of return);

Discount factors at 10\% are:

| Year 1 | 0.909 |
| :--- | :--- |
| Year 2 | 0.826 |
| Year 3 | 0.751 |
| Year 4 | 0.683 |
| Year 5 | 0.621 |

(ii) State, on the basis of your calculations, whether the investment is worthwhile. Justify your statement.

## 4

A capital investment project has estimated net cash inflows of $£ 60,000$ per annum for six years.
Discounting the net cash inflows at $10 \%$ and $20 \%$ per annum, the present values of the inflows are:

| Annual discount rate | Present value of inflows |
| :--- | :--- |
| $10 \%$ | $£ 261,300$ |
| $20 \%$ | $£ 199,600$ |

The initial investment amount is $£ 224,000$.

## Required:

(i) Plot the net present values of the project, at discount rates of $\mathbf{1 0 \%}$ and $\mathbf{2 0 \%}$ per annum, on the graph paper
(ii) Indicate, on the graph, an estimate of the internal rate of return of the project.
(2 marks)

## 5

A company is considering whether to add a new product to its range. Machinery costing $\$ 280,000$ would have to be bought at the start of the project (Year 0). The project life would be five years with no disposal value at the end of the project.

Sales of the new product are forecast at 12,000 units in each of Years 1 and 2, rising to 15,000 units in each of Years 3, 4 and 5. The selling price per unit will be $\$ 15$ in Year 1 and $\$ 16$ thereafter. Variable costs are estimated at $\$ 9$ per unit.

Straight-line depreciation of the machine would be $\$ 56,000$ in each year. No other future incremental fixed costs would be incurred. However, the company has already incurred expenditure of $\$ 6,000$ for a market research survey and has decided to write this off against profits made in the first year if the investment takes place.

Assume that all cash flows, apart from the investment in machinery, occur at the end of each year.
The cost of capital is $14 \%$ per annum. Discount factors at $14 \%$ are:

| Year 1 | 0.877 |
| :--- | :--- |
| Year 2 | 0.769 |
| Year 3 | 0.675 |
| Year 4 | 0.592 |
| Year 5 | 0.519 |

Required:
(a) Calculate the net cash flows for each year of the project (Year 0 to 5 ). (8 marks)
(b) Calculate the net present value of the project (working in $\$ 000$ ).
(c) State whether the internal rate of return is above or below $14 \%$ and justify your conclusion.

